Cancer Cell International

Primary research

)
CANCER CELL
INTERNATIONAL

>

@,

)
PSS
of

Sulindac derivatives inhibit cell growth and induce apoptosis in
primary cells from malignant peripheral nerve sheath tumors of

NF | -patients

Silke Frahm*1, Andreas Kurtz?, Lan Kluwe3, Faris FarassatiZ,
Reinhard E Friedrich3 and Victor F Mautner3

Address: 'Laboratory of Brain Tumor Biology, Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany, 2Department of
Neurosurgery, Massachussetts General Hospital, Charlestown MA, USA and 3Department of Maxillofacial Surgery, University Hospital Eppendorf,

Hamburg, Germany

Email: Silke Frahm* - sfrahm @uke.uni-hamburg.de; Andreas Kurtz - KurtzA@rki.de; Lan Kluwe - kluwe@uke.uni-hamburg.de;
Faris Farassati - Farassati.Faris@mayo.edu; Reinhard E Friedrich - rfriedri@uke.uni-hamburg.de; Victor F Mautner - viges@aol.com

* Corresponding author

Published: |7 May 2004
Cancer Cell International 2004, 4:4

This article is available from: http://www.cancerci.com/content/4/1/4

Received: 19 December 2003
Accepted: 17 May 2004

© 2004 Frahm et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all
media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

BiolVled Central

Background: Malignant peripheral nerve sheath tumors (MPNSTSs) are neoplasms leading to death
in most cases. Patients with Neurofibromatosis type | have an increased risk of developing this
malignancy. The metabolites of the inactive prodrug Sulindac, Sulindac Sulfide and Sulindac Sulfone
(Exisulind) are new chemopreventive agents that show promising results in the treatment of
different cancer types. In this study we examined the antineoplastic effect of these compounds on
primary cells derived from two MPNSTs of Neurofibromatosis type | patients.

Results: Exisulind and Sulindac Sulfide showed a dramatic time- and dose-dependent growth
inhibitory effect with IC50-values of 120 uM and 63 uM, respectively. The decrease in viability of
the tested cells correlated with induction of apoptosis. Treatment with 500 uM Exisulind and 125
1M Sulindac Sulfide for a period of 2 days increased the rate of apoptosis 21-27-fold compared to
untreated cells. Reduced expression of RAS-GTP and phosphorylated ERK1/2 was detected in
treated MPNST cells. Moreover, elevated levels of phosphorylated SAPK/JNK were found after
drug treatment, and low activation of cleaved caspase-3 was seen.

Conclusions: Our results suggest that this class of compounds may be of therapeutic benefit for
Neurofibromatosis type | patients with MPNST.

Background

The malignant peripheral nerve sheath tumor (MPNST) is
one of the most aggressive neoplasias of soft tissue, char-
acterized by neurological deficits, pain and a rapid
increase in size. Surgical removals or amputations do not
prevent from recurrences with increased morbidity and
fatality. More than 50% of individuals with MPNSTs also
have neurofibromatosis type 1 (NF1), and approximately

10% of NF1 patients develop MPNSTs, of whom only
21% survive for five years after diagnosis [1,2]. NF1 is a
common genetic disease with an incidence of 1:3500
[3,4], caused by mutations of the NF1 tumor suppressor
gene located on chromosome 17q11.2 [5]. One proposed
function of the NF1 gene product neurofibromin is the
downregulation of activated RAS, based on the conversion
of RAS-GTP to RAS-GDP via its GTPase enzymatic activity
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[6]. However, the loss of NF1 gene function is not the
unique molecular lesion in these tumors, inactivation of
p53 and p16 gene regions seem to play a crucial role in the
malignant transformation of MPNSTs [7,8]. To this date,
there is no effective treatment of NF1 patients with this
malignancy [9]. Our interest focused on the therapeutic
use of oral, non-toxic agents which may be able to control
the progression of MPNSTs.

Sulindac, a nonsteroidal anti-inflammatory drug
(NSAID), is known to prevent recurrence and reduce
colorectal polyps in number and size in patients with
familial adenomatous polyposis [10]. Sulindac is a prod-
rug that is metabolized to a Sulfide and Sulfone derivative
in vivo. The biological mechanism of the antineoplastic
effect of both Sulindac metabolites is the selective induc-
tion of apoptosis, found in human breast-, lung-, prostate-
and colon-cancer cell lines [11-14]. Furthermore, the
tumor-preventing effect of the Sulfone metabolite has
been shown in animal models of colon [15], breast [16]
and lung cancer [17].

The anti-inflammatory properties of the Sulfide metabo-
lite are supposed to be mediated by cyclooxigenase (COX)
inhibition that results in a reduction of prostaglandin syn-
thesis [18]. In contrast, the Sulfone metabolite (Exisulind)
is a pro-apoptotic drug that inhibits cancer growth with-
out inhibiting COX and independent of prostaglandin
synthesis, p53 induction and cell cycle arrest
[11,13,18,19]. In a colon cancer cell line Exisulind
showed induction of apoptosis as a result of its ability to
inhibit cGMP-dependent phosphodiesterase (PDE), fol-
lowed by elevated cGMP-levels and increased proteinki-
nase G (PKG) activity [20]. Furthermore, PKG activates
the JNK pathway via phosphorylation and activation of
MEKK1 [21,22]. Activation of JNK plays a critical role in
gene transcription for mediation of apoptosis, usually
involving cleavage of caspases and PARP [23]. Recent
studies implicate that both Sulindac metabolites inhibit
the RAS signaling pathway, reducing the levels of activated
(phosphorylated) ERK1/2 [24,25], that indirectly regu-
lates gene transcription responsible for enhanced cell pro-
liferation and differentiation. However, the exact
mechanisms of apoptosis induced by Exisulind and Sulin-
dac Sulfide remain unknown.

In clinical studies Exisulind showed antineoplastic effects
and has been well tolerated by most colorectal and pros-
tate cancer patients [19,26]. Lung cancer patients treated
with twice-daily oral doses exhibited peak concentrations
of Exisulind that were equivalent to those required for in
vitro effects [27]. Exisulind applied in combination with
the semisynthetic drug Docetaxel indicates additive or
synergistic chemopreventive properties in in vitro and in
vivo experiments [28].
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In this study, we examined the effect of both Sulindac
metabolites on two primary MPNST cell lines from NF1
patients in vitro. Additionally, we tested the activity of
both drugs on the RAS- and JNK-signaling pathway.

Results

Cell growth inhibition

Exisulind and Sulindac Sulfide were examined for their
ability to inhibit growth of two MPNST cell lines. Exi-
sulind was added to the media at a final concentration of
100, 250 and 500 uM and Sulindac Sulfide of 50, 100 and
125 uM. Both Sulindac derivatives exhibited a dramatic
dose-dependent growth inhibition of the two MPNST
derived cell lines (Fig. 1). This effect was more apparent
after 4 days of treatment than after 2 days (Fig. 1). The cor-
responding mean IC, values of both cell lines after 96 h
of treatment were 120 uM for Exisulind, and 63 uM for
Sulindac Sulfide. The proliferation rate of cells did not
change when the medium was supplemented with DMSO
at concentrations used in drug treatment (0.2%).

Viability and apoptosis

To determine the relation between growth inhibition and
apoptosis, we measured the number of viable cells and the
amount of DNA-fragmentation simultaneously. The via-
bility of the cells decreased drastically after 48 h of drug
treatment (Fig. 2a,2b). At the highest applied concentra-
tions of Exisulind and Sulindac Sulfide, only 1-33% of
the cells were actively metabolizing compared to cells
treated with the vehicle alone. As shown in figures 2¢,2d,
the reduction of viable cell number is paralleled by the
increase of apoptosis rates up to 25-45% for 500 uM Exi-
sulind and up to 43-60% for 125 uM Sulindac Sulfide,
determined by photometrical quantification of DNA-frag-
mentation. Supplementation of DMSO to the culture
medium at concentrations used for drug treatment had no
effect on cell death.

Apoptosis induction by Sulindac metabolites was further
examined by TUNEL assay on both cell lines. Figure 3 dis-
plays a time dependent induction of apoptosis in MPNST
cell line S462 treated with 500 uM Exisulind and 125 uM
Sulindac Sulfide. In both cell lines, the apoptosis rate
increased 3-5 fold after 24 h treatment with Exisulind in
comparison to untreated cells, and 7-21 fold after 48 h
treatment. Similarly, 24 h treatment with Sulindac Sulfide
caused a 3-4 fold increase in the proportion of apoptotic
cells, and a 10-27 fold increase after 48 h treatment
(Table 1).

Apparent alterations in cell morphology and detachment
from the culture surface were observed after 48 h of treat-
ment with 125 uM Sulindac Sulfide and 500 uM Exisulind
in both cell lines, when cells became sparse and rounded
(Fig. 4b). Cell shrinkage, nuclear condensation and
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Growth inhibition of MPNST cell lines S462 and S$520 Cells were plated at a density of 15000/well on 12 mm coverslips
and treated with indicated concentrations of Exisulind and Sulindac Sulfide for 48 h and 96 h. Cell growth was measured by
BrdU-incorporation. The final DMSO concentration used here did not exceed 0.2% and had no effect on cell growth. The val-

ues represent the means and standard deviations of triplicates.

formation of apoptotic bodies were visible on propidium
iodide labeled cell nuclei, which are classical characteris-
tics of apoptosis and not necrosis (Fig. 4c).

RAS signaling

To ascertain the effect of the Sulindac metabolites on the
RAS signaling pathway, we determined the levels of RAS-
GTP by affinity precipitation and western blotting with a
monoclonal RAS antibody, as well as activation of extra-
cellular signal-regulated kinases 1 and 2 (ERK1/2). After
24 h treatment with the Sulindac metabolites, reduction
of RAS-GTP levels were observed in both cell lines, slightly
more pronounced in Exisulind treated cells (Fig. 5a). In
concordance, phosphorylation of ERK1 (p44) and ERK2
(p42) was also reduced after the treatment. No changes in
basal ERK1/2 levels were observed (Fig. 5a). Under serum-
free conditions a significant reduction of phospho-ERK1/
2 activation was detected already after 8 h of treatment
(data not shown).

The effects of Sulindac metabolites were further examined
after stimulation with epidermal growth factor (EGF). The
RAS-GTP level did not change after EGF stimulation, nei-
ther after additional treatment with Sulindac derivatives.
Phosphorylation of ERK1/2 was upregulated by EGF stim-
ulation at similar extents in treated and untreated cells
(Fig. 5¢). Phosphorylation of AKT, an inhibitor of several
apoptotic pathways and important player in survival sign-

aling, also increased upon EGF stimulation. Additional
treatment with Sulindac metabolites did not alter the
EGF-elevated phospho-AKT level.

SAPKIJNK and caspase-3 activation

The stress-activated protein kinase/ Jun-terminal kinase
SAPK/JNK, a mediator of apoptosis, was activated (phos-
phorylated) 16 h after treatment with either of the Sulin-
dac metabolites (not shown), and increased further after
24 h and 48 h (Fig. 6). Treatment with DHA, a drug
known to induce apoptosis in mouse MPNST cells (per-
sonal communication of Andreas Kurtz) had no effect on
phosphorylation of this protein.

In addition, cleavage of caspase-3, a common down-
stream regulator of SAPK/JNK [23,34], was assayed. No
cleaved caspase-3 was detected by western blotting after
24 h and 48 h treatment with Sulindac metabolites or
DHA (Fig. 6). Furthermore, no consistent differences in
caspase-3 activation were found after 8 h-16 h of treat-
ment (data not shown).

In order to verify the obtained results, an additional color-
imetric caspase-3 assay was performed. After 24 h of treat-
ment, Exisulind and Sulindac Sulfide treated cells showed
only low levels of caspase-3 enzymatic activity, 0.7 and
3.5 Units respectively. By comparison, 12.7 Units of pro-
tease activity were measured after addition of
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Correlation of growth inhibition (reduction of viable cell number) and apoptosis The increase of apoptotic cells is
paralleled by reduction of viable cell number at the corresponding concentrations. A-B: Viability of cell lines $462 and S520
were measured by their ability to reduce XTT metabolically to a purple formazan product after 48 h of treatment with Exi-
sulind and Sulindac Sulfide at different concentrations. The percentage of viable cells was determined setting the absorbance of
cells treated with the vehicle as 100%. C-D: Percentages of apoptotic cells were determined by photometric quantification of
DNA- and histone-fragmentation after 48 h of drug treatment. The absorbance mean values of treated samples (triplicates)
were normalized to the corresponding control of untreated cells and the maximal absorbance from the test compound
included in the assay was used as positive control (100% apoptosis).

Staurosporin (positive control) to the culture medium for
24 h in the same cells. Thus, the Sulindac derivatives were
shown to induce apoptosis in the presence of low caspase-

3 activity.

Discussion

In this study, we demonstrated that the Sulfide and Sul-
fone Sulindac metabolites inhibit the proliferation of
tumor cells derived from human MPNSTs. We observed
induction of apoptosis in association with reduction of
viable cell number, and showed that apoptosis primarily
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Figure 3

TUNEL assay of cell line S462 showing time dependent induction of apoptosis Cells were either treated with 0.2%
DMSO for 48 h (A, D), 500 uM Exisulind (Exi) for 24 h (B) and 48 h (C) or 125 uM Sulindac Sulfide (s. s.) for 24 h (E) and 48 h
(F). The percentage of gated cells (upper box) represents the ratio of apoptotic cells (FITC-BrdU) to the total number of cells
(PI), values are presented beneath each display.

Table I: Percentage of apoptotic cells after 24 h and 48 h of drug-treatment

24 h treatment 48 h treatment

cell line DMSO Exisulind S. Sulfide Exisulind S. Sulfide
S462 0,77 4,04 3,11 16,34 21,16
$520 4,66 16,04 16,18 33,56 48,03

contributes to growth inhibition of the MPNST cells.
Exisulind and Sulindac Sulfide completely inhibited
MPNST cell growth due to induction of apoptosis at doses
of 500 uM and 125 pM, respectively, comparable to those
used in previous studies on other tumor types [11,13,14].
The drugs were effective at these doses in 10% serum,

while in serum free conditions induction of apoptosis was
more rapid and growth inhibition more complete (data
not shown). A previous study showed that Exisulind
induced apoptosis only in prostate cancer cells, but not in
normal epithelial prostate cells [13]. We used normal
(NF1+/-) fibroblasts from the MPNST-donor as control
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Changes in cell morphology characteristic for apoptosis Morphologic changes became evident after 48 h of treatment
with 500 uM Exisulind or 125 puM Sulindac Sulfide. A-C: Phase contrast photomicrographs of S462 cells before (A) and after
Exisulind (B) treatment. Cell shrinkage, nuclear condensation and formation of apoptotic bodies shown on immunocytochemi-
cally labeled cell nuclei with Pl after Sulindac Sulfide treatment (C) are classical characteristics of apoptosis and not necrosis.

cells to test the effects of Exisulind and found that growth
of these cells was only slightly inhibited after drug treat-
ment (data not shown). Since Exisulind causes phos-
phodiesterase (PDE) inhibition in tumor cells [20,21],
this differential effect on normal versus tumor cells may in
part be explained by the overexpression of cGMP-PDE in
most neoplasias compared to normal cells [19].

Increased levels of RAS-GTP have previously been shown
in MPNSTs from NF1 patients [29-31], caused perhaps by
loss of the RAS-GAP-function of the NF1 gene product,
neurofibromin. In the present study both, Exisulind and
Sulindac Sulfide significantly reduced the levels of RAS-
GTP and phospho-ERK1/2 - a downstream effector in the
RAS pathway. Basal ERK1/2 levels were not affected by the
treatment, thus excluding cytotoxic effects of the drugs
and demonstrating specific effects on the RAS-ERK activa-
tion cascade during MPNST-cell growth inhibition. In
mouse MPNST-derived cells, epidermal growth factor
(EGF) was shown to stimulate proliferation in association
with activation of phospho-ERK1/2 [32]. Interestingly,
exposure of the human MPNST-derived cells to EGF did
not increase RAS-GTP levels, yet strongly induced phos-
phorylation of ERK1/2. One explanation for this effect
may be that MPNST cells express maximal levels of RAS-
GTP, thus no additional effect of EGF could be detected.
Apparently, activation of ERK1/2 by EGF stimulation was
independent of increased RAS-GTP levels. In addition, no
effects on RAS-GTP and phospho-ERK1/2 levels by Sulin-
dac derivatives were observed in the presence of EGF.
Since EGF-stimulated cells still undergo drug-induced

apoptosis, the observed reduction in cell number is inde-
pendent of the state of RAS-pathway activation.

While apoptosis induction seems to be the predominant
effect of Sulindac derivatives on MPNST-cells, AKT, an
active inhibitor of apoptosis, is most likely not involved in
mediating this effect, since its phosphorylated form is not
present in these cells under any conditions, besides the
EGF-stimulated condition. On the other hand, it was pre-
viously shown that the JNK-pathway is associated with the
biological mechanism of action of the Sulindac metabo-
lites in human colon cells [21]. In MPNST-cells, the acti-
vation of phospho-SAPK/INK preceded apoptosis and
reached its peak at 24 h treatment, while the observed
apoptosis rate still increased after 48 h of treatment, indi-
cating a causative association. Furthermore, Sulindac
metabolites showed low activation of caspase-3, a com-
mon downstream regulator of SAPK/JNK [23,33]. These
caspase-3 levels were probably to low for the antibody-
based detection.

Sulindac Sulfide and Sulfone are dissimilar compounds
according to their pharmacological classification: the first
is a NSAID and decreases prostaglandin synthesis by inhi-
bition of COX-1 and -2, whereas the Sulfone metabolite
does not act as a NSAID. However, the effects of both
drugs on growth inhibition, induction of apoptosis, RAS
pathway inhibition and JNK-activation seem to be
comparable, suggesting that their apoptotic activity is
independent of COX inhibition.

Page 6 of 11

(page number not for citation purposes)



Cancer Cell International 2004, 4 http://www.cancerci.com/content/4/1/4

A
S462 S520

|
DMSO Exi S.S. DMSO Exi S.S.

S == A W W o ho-ERK 112

Total ERK 1/2
&

S L e RAS-GTP

Phospho-ERK 1/2

Phospho-AKT

- S g Total ERK 112

Figure 5

Inhibition of RAS-GTP and phosphorylated ERK1/2 in human MPNST cells exposed to Sulindac derivatives A:
Cell lines 5462 and S520 were grown in DMEM with 10% serum and treated at 80-90% confluency with either 0.2% DMSO,
500 uM Exisulind (Exi) or 125 pM Sulindac Sulfide (s. s.). Cells were lysed after 24 h and RAS was immunoprecipitated and
detected by western blotting with an anti-RAS antibody, the same lysates were blotted for phosphorylated (phospho-) and
basal (total-) ERK /2. B: Upregulation of phosphorylated ERK1/2 and AKT for treated and untreated cells after addition of
EGF, whereas the RAS-GTP level remains unchanged at all conditions. Cell line S462 was starved over night and then Sulindac
metabolites were supplemented at concentrations mentioned above in DMEM containing 0.1% serum. EGF was added after 24
h of treatment, cells were lysed |5 min later and after western blotting incubated with phosphorylated and unphosphorylated
ERK /2, phospho-AKT and RAS-antibodies.
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Activation of SAPK/JNK but not caspase-3 after treatment with Sulindac metabolites The activation of phospho-
SAPK/JNK (dimer: 46 kD + 54 kD) reached the highest level after 24 h of treatment with Exisulind (Exi) and Sulindac Sulfide (s.
s.), but no effect was seen on cleaved caspase-3 activation. DHA did not have any effect on neither JNK nor caspase-3 activa-
tion. Cell line 5462 was grown in DMEM with 10% serum and treated at 80-90% confluency with 0.2% DMSO, 500 uM Exi-
sulind (Exi) or 125 uM Sulindac Sulfide (s. s.) and blots were incubated with either phosphorylated SAPK/JNK or cleaved
caspase-3 antibody. The positive control for caspase activation is a mouse MPNST cell line treated 7 h with 30 uM DHA.

The antineoplastic effect of the Sulindac derivatives was
more pronounced for the Sulfide metabolite than for Exi-
sulind, as shown in this and in previous studies
[11,13,14]. Anyhow, long-term application of Sulindac
Sulfide may cause irritations in the upper gastrointestinal
tract due to COX inhibition [34]. In contrast, Exisulind
has been well tolerated by most patients in phase III
familial adenomatous polyposis (FAP) trials and is cur-
rently being evaluated in patients with lung, prostate,
colon and breast cancer [19]. Furthermore, positive results
could be observed with Exisulind in in vivo animal models
of several cancer types [15-17].

Conclusions

In summary, our results provide evidence that both Sulin-
dac metabolites effectively suppress the growth of MPNST
cells in vitro at non toxic doses. This promising finding
opens for the first time a new perspective in drug treat-
ment for patients with this kind of malignancy.

Methods

Cell lines and tissue culture

Cells were isolated from 2 MPNSTs from NF1 patients
diagnosed according to the NIH criteria, and primary cell
cultures were established (S462 and S520) and verified
genetically [35]. Cells were grown in DMEM (Gibco, Pais-
ley, UK) supplemented with 10% FBS (Gibco), 500 U/ml
penicillin/streptomycin (Gibco), 2 mM glutamine (Bio-
chrom, Berlin, Germany), and 1 mM sodium pyruvate
(Biochrom), in a humidified atmosphere at 37°C and
10% CO,.

Cell growth inhibition

Cells were plated in 24-well plates with coverslips (@ 12
mm) at a density of 1.5 x 104 cells/well and were allowed
to settle down over night. After 24 h, Sulindac Sulfide and
Exisulind (Calbiochem, San Diego, CA) dissolved in
dimethyl sulfoxide (DMSO; Sigma, St. Louis, MO) were
added at various concentrations to the media. Cell growth
inhibition was measured by 5-Bromo-2'deoxyuridine
(BrdU) incorporation as described previously [35] after
48 h and 96 h of treatment. The proliferation rate is
determined as the ratio of proliferating cells to the total
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number of cells, counted in triplicates of 500 cells. The
ICs, values for growth inhibition were calculated using
Microsoft Excel 2000 software. The final DMSO concen-
tration used here did not exceed 0.2% and had no effect
on cell growth.

Viability
Cells were seeded in 96-well plates at a density of 1 x 104
cells/well. After 24 h, Sulindac Sulfide and Exisulind were
added at various concentrations in triplicates. After a time
period of 48 h, the tetrazolium salt XTT was supple-
mented to the medium, according to the manufacturers
instructions (Cell proliferation kit IT XTT; Roche, Basel,
Swiss). Only viable cells can reduce XIT metabolically to
a purple formazan product, which can be quantified spec-
trophotometrically. The viability was determined as per-
cent of control cells (cells treated with the vehicle alone
were defined as 100% viable).

Apoptosis assays

Photometric Quantification

Cells were seeded in 96-well plates at a density of 1 x 104
cells/well. After 24 h, Sulindac Sulfide and Exisulind were
added at various concentrations to the media in tripli-
cates. The cell death detection elisaP!us assay (Roche) was
performed according to the manufacturers instructions
with cells treated for 48 h. The absorbance values of drug
treated samples - equivalent to the amount of DNA-frag-
mentation - were normalized with the corresponding
negative control of cells treated with DMSO. The maximal
absorbance from the test compound included in the assay
was defined as positive control (100% apoptosis).

Nuclei morphology

Changes in cell-nuclei morphology characteristic for
apoptosis were examined on cells grown on coverslips
using a fluorescence microscope. Therefore, cells were
fixed in 4% paraformaldehyde after 48 h of drug treat-
ment, permeabilized in ice-cold methanol and incubated
for 15 min at room temperature with 0.5 pg/ml propid-
ium iodide (PI; Molecular Probes, Leiden, Netherlands).

TUNEL assay

TUNEL (terminal deoxynucleotidyltransferase nick end
labeling) assay (APO-BRDU KIT; BD Biosciences, San
Jose, CA) was performed according to the manufacturers
instructions. Briefly, 7,5 x 105 cells were seeded on 6 cm
dishes and treated 24 h later with 500 uM Exisulind, 125
puM Sulindac Sulfide or 0.2% DMSO. After 24 h and 48 h
of treatment, cells were collected by trypsinization and
fixed in 1% paraformaldehyde. After incorporation of Br-
dUTPs, cells were visualized using FITC-labeled anti-BrdU
antibody. The amount of total cellular DNA is obtained
by staining cells with propidium iodide/RNase buffer.
Flow cytometric analysis displays the amount of total

http://www.cancerci.com/content/4/1/4

DNA in red on the X-axis and the FITC-BrdU incorporated
nuclei in green on the Y-axis.

Western blot analysis

Cells were scraped from plates 24 h after drug treatment
and resuspended in lysis buffer (25 mM Hepes pH7.5,
150 mM NaCl, 1% Igepal CA-630, 10 mM MgCl,, 1 mM
EDTA and 2% Glycerol). RAS affinity precipitation with
Raf-1 RBD agarose beads was performed according to the
manufacturers instructions (RAS activation assay Kkit;
Upstate, San Diego, CA). Samples were prepared for SDS-
PAGE, followed by electroblotting onto nitrocellulose
membrane. Before overnight-incubation at 4°C with
monoclonal Anti-RAS clone RAS10 antibody (1 pg/ml),
the blot was blocked 30 min in Tris-buffered normal
saline (TBS) with 3% non-fat dry milk and 0.05% Tween-
20 (BioRad, Hercules, CA) at room temperature. Separate
blots were blocked overnight at 4°C in TBS with 5% BSA
(Sigma) and 0.05% Tween-20 and incubated with Anti-
phospho-Erk1/2 (1 pg/ml), Anti-Erk1/2 (1 pg/ml) or
Anti-phospho-AKT (1 pg/ml) (Upstate) at room tempera-
ture for 2 h. Immunoreactive protein was detected by
incubating blots with horseradish peroxidase-conjugated
secondary antibody for 1 h followed by chemilumines-
cent substrate for 1 min, and visualized by luminography.

In a separate experiment cells were starved over night
without serum before drug treatment. 500 uM Exisulind
or 75 uM Sulindac Sulfide was then supplemented at
0.1% FBS concentration, and after 24 h incubation time
20 ng/ml epidermal growth factor (EGF; Invitrogen,
Carlsbad, CA) was added for 15 min to the media. Lysates
were treated as described above.

For the detection of caspase-3 and phosphorylated JNK,
cells were lysed in CHAPS-lysis buffer (50 mM Pipes/HCI
pH6.5, 2 mM EDTA, 0.1% Chaps, 20 pg/ml Leupeptin, 10
pg/ml Pepstatin A, 10 pg/ml Aprotinin, 5 mM DTT, 1 mM
PMSF) after 24 h and 48 h of drug treatment with either
one of the Sulindac derivatives or docosahexaenoic acid
(DHA) and loaded onto SDS-PAGE. One positive caspase-
control was loaded, a mouse MPNST cell line treated for 7
h with 30 uM DHA. After SDS-gel electrophoresis and
transfer, nitrocellulose membranes were blocked in TBS/
Tween with 5% non-fat dry milk for 1 h and incubated
with Anti-cleaved-caspase-3 or Anti-phospho-SAPK/JNK
(Cell Signaling, Beverly, MA) over night at 4°C followed
by the detection steps described above.

Caspase-3 colorimetric assay

In addition to the antibody-based detection of cleaved
caspase-3, a colorimetric assay based on quantification of
protease activity was performed according to the manu-
facturers instructions (BD ApoAlert™ Caspase Colorimet-
ric Assay Kit; BD Biosciences). Briefly, 2 x 100 cells were
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seeded on 6 cm dishes (in duplicate cell plates) and after
24 h treated with 500 uM Exisulind, 125 uM Sulindac
Sulfide, 50 ng/ml Staurosporin (a known apoptosis
inducer; Sigma) or 0.2% DMSO. After 24 h, cells were col-
lected by trypsinization and resuspended in cell lysis
buffer. After precipitation of the cellular debris, the
remaining supernatant was incubated with a caspase-3
substrate for 1 h at 37°C. The colorimetric assay uses the
spectrophotometric detection of the chromophore p-
nitroaniline (pNA) after its cleavage by caspases from the
labeled caspase-specific substrates. Samples were read at
405 nm in a microplate reader. The reading-values of the
uninduced control were substracted from its correspond-
ing induced sample and Units of caspase-3 activity were
calculated using a pNA (supplied in the kit) calibration
curve.

List of abbreviations

MPNST: malignant peripheral nerve sheath tumor; NF1:
neurofibromatosis type 1; FAP: familial adenomatous
polyposis; NSAID: nonsteroidal anti-inflammatory drug;
COX: cyclooxigenase; PDE: phosphodiesterase; PKG: pro-
teinkinase G; JNK: C-jun N-terminal protein kinase;
MEKK: mitogen activated protein kinase kinase kinase;
PARP: poly (ADP-ribose) polymerase; phospho-ERK1/2:
phosphorylated extracellular signal-regulated kinase 1
and 2; NIH: national institute of health; DMEM: Dul-
becco's modified eagle medium; FBS: fetal bovine serum;
DMSO: dimethyl sulfoxide; BrdU: 5-Bromo-2'deoxyurid-
ine; bFGF: basic fibroblastic growth factor; PBS: phos-
phate  buffered saline; XTT: sodium  3'-[1-
(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-
6-nitro)benzene sulfonic acid hydrate); TUNEL: terminal
deoxynucleotidyltransferase dUTP nick end labelling; PI:
propidium iodide; TBS: Tris-buffered normal saline; EGF:
epidermal growth factor; DTT: dithiothreitol; PMSF: phe-
nylmethylsulfonyl fluoride; DHA; docosahexaenoic acid;
SAPK: stress-activated protein kinase; h: hours.
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